Understanding and Teaching Today’s Learners

Dr. Mark Taylor
www.taylorprograms.com
This handout is provided as a courtesy to attendees at ATU events on May 7, 2015. It is not intended as a stand-alone document but supports the information from the program. It should not be redistributed to non-attendees without the specific permission of Dr. Taylor. Articles and more information are available at www.taylorprpograms.com

More information about the audience response system/“clickers” is available at www.turningtechnologies.com
Generation NeXt:
Today's Postmodern Student—Meeting, Teaching, and Serving

Mark L. Taylor

Introduction

Generation NeXt, the current cohort of traditionally aged college students, brings educational and social characteristics to campus that are challenging educators. The product of a very different social reality than the members of the generational cohorts who predominate in college faculties and staff, their postmodern sensibilities and consumer approach to education may be a remarkably poor fit with what schools traditionally offer (Sacks 1996). This presentation overviews the characteristics of Generation NeXt and presents suggestions for helping its members be successful in postsecondary education.
Generation NeXt Goes to Work:
Issues in Workplace Readiness and Performance

Mark Taylor

Many traditionally aged graduates from Generation NeXt are having significant difficulty in successfully transitioning from college into the workplace and in adapting to the expectations of the workplace (Kearnes and Shirley 2006; Taylor 2006a). Many schools have been slow to recognize the significance and magnitude of this epidemic of work-life unreadiness so are not making the necessary institutional, programmatic, and instructional changes necessary to improve the work-related abilities of their graduates (Levine 2005b).
Teaching Generation NeXt: A Pedagogy for Today’s Learners

Mark Taylor

Faculty struggle to effectively teach our traditionally aged students from Generation NeXt. They are different, and different kinds of learners, than anyone higher education has experienced in the past, and there is ample evidence of a growing divide and mismatch between faculty and students in teaching and learning (Coates 2007; Schroeder 2004). Our students’ academic preparation and expectations, consumer orientation, esteem and importance issues, and use of technology are challenging traditional educational practices (Taylor, 2005, 2006; Twenge 2006). “Old school” methods, especially the all too common lecture on content to passive learners, are proving less and less successful in bringing students to appropriate learning and developmental outcomes (Bok 2006; Shulman 2005a, 2005b; Tagg 2004; U.S. Department of Education 2006). Workplace readiness outcomes are often poor and are coming under increased scrutiny (Grossman 2005; Hersch and Merrow 2005; Levine 2005; Taylor 2007).

This generation of digital natives has caught educators flat-footed (Prensky 2001a, 2001b; Tapscott 2009). Pedagogies of activity and engagement, especially those that use recently available Web- and
Teaching Generation NeXt: Methods and Techniques for Today’s Learners

Mark Taylor

Faculty struggle to effectively teach traditionally aged students from Generation NeXt. Their academic preparation and expectations, consumer orientation, esteem and importance issues, and use of technology are challenging traditional educational practices (Coates 2007; Hersch and Merrow 2005; Schroeder 2004; Taylor 2005, 2006, 2010; Twenge 2006; Prensky 2001a, 2001b; Tapscott 2009). While old-school methods, especially the all too common lecture on content to passive learners, are proving less and less successful in bringing students to successful learning and developmental outcomes, pedagogies of activity and engagement, especially those that use recently available Web- and technology-based tools and resources, can be more effective but are not attaining significant levels of use in most schools. Many faculty who are interested in meaningful student learning understand why they need to move from the traditional academic delivery model to a best practices model based on increasing student responsibility, engagement, and activity that leverages newly available online and technology-based resources, but they may not know what to do (Barr and Tagg 1995; Bok 2006; Gardiner 1998; Tagg 2004; Taylor 2010; U. S. Department of Education 2006). This paper provides an overview of specific techniques for improving instruction and student learning when operationalizing the model introduced in “Teaching Generation NeXt: A Pedagogy for Today’s Learners” (Taylor 2010).
Teaching Generation NeXt: Leveraging Technology with Today’s Digital Learners

Mark Taylor

Faculty struggle to effectively teach our traditionally aged students from Generation NeXt. In addition to issues with academic preparation, academic expectations, consumer orientation, and self-appraisal, esteem, and importance issues, their uses of technology are challenging traditional educational practices (Coates 2007; Hersch and Merrow 2005; Prensky 2001a, 2001b; Taylor 2005, 2006, 2007, 2010, 2011; Twenge 2006; Tapscott 2009).

This generation of digital natives has caught many educators flat-footed (Prensky 2001a, 2001b). Rather than complain about students’ technology and online preferences, schools need to embrace technology and leverage it for academic and developmental means and ends. “Old school” and generally low-tech
Today

- Who are these learners?
- How do their MODAL traits impact success in school, and beyond?
 - Persistence
 - Learning outcomes
 - Workplace readiness
- What can we do..?
- “Best practices”
- Your invitation.
MIA FARROW
ROSEMARY'S BABY
It's not what you're expecting.
LOOK WHO'S TALKING

"Two Thumbs Up."

SISKEL & EBERT
Child-centric families
The Era of the Wanted, Precious, Protected, Perfected Child
“Careerist parenting”
Loss of free play
No down time.
Meet the Parents:
Managing for Student Success

Mark Taylor

Few in higher education will disagree that students’ parents are inserting and asserting themselves like never before. The infamous helicopter parent, hovering and occasionally swooping in for the rescue, is now often replaced by the “snowplow” or “bulldozer parent,” pushing anticipated obstacles out of their children’s way before the children may even be aware of a challenge (Taylor 2006b). While many educators complain that parental involvement in course selection, discipline, and academic work reduces students’ opportunities to face meaningful learning and developmental challenges on their own, few deny parents’ significance in college selection, student persistence, and financial support.
This Dad Used a Drone to Follow His Daughter to School

Alyssa Bereznak
National Correspondent, Technology
April 22, 2015

One dad has singlehandedly brought new meaning to the term ‘helicopter parent.’
HELI.CO.PETERS, SNOWPLOWS, AND BULLDOZERS:
MANAGING STUDENTS’ PARENTS

BY MARK TAYLOR

MENTION PARENTS TO ADMINISTRATORS, STAFF, OR FACULTY AT MOST COLLEGES TODAY, AND YOU WILL YEAR A LITANY OF COMPLAINTS ABOUT MONITORING, INTERFERENCE, AND DOWNRIGHT INTRUSION IN THEIR WORK WITH STUDENTS. FROM ADMISSION AND HOUSING THROUGH COURSE SELECTION, TO EMPLOYMENT AND STUDENT ORGANIZATION INVOLVEMENT, PARENTS ARE INSERTING AND ASSERTING THEMSELVES LIKE NEVER BEFORE.
Generation NeXt

The Grand Experiment
- Self-esteem agenda
- Overrating skills
- Sensitive/ defensive

“The Happiness Project”
- Relentless choices
- Protected from failure, risk
- Loss of free play
- Praise addicted
- Dependent/ Entitled
- Value talent over effort
- Responsibility issues?
The Creativity Crisis: The Decrease in Creative Thinking Scores on the Torrance Tests of Creative Thinking

Kyung Hee Kim

School of Education, The College of William and Mary

The Torrance Tests of Creative Thinking (TTCT) was developed in 1966 and renormed five times: in 1974, 1984, 1990, 1998, and 2008. The total sample for all six normative samples included 272,599 kindergarten through 12th grade students and adults. Analysis of the normative data showed that creative thinking scores remained static or decreased, starting at sixth grade. Results also indicated that since 1990, even as IQ scores have risen, creative thinking scores have significantly decreased. The decrease for kindergartners through third graders was the most significant.

Research shows that intelligence is increasing (Ceci, 1991; Ceci & Williams, 1997; Dickens & Flynn, 2001). Based on the test norms of the Stanford-Binet and 1970s, and then remained stable with slight increases in the 1980s. Since the 1990s, however, the overall downward trend has been reversed (College Entrance Exam-
Creativity Crisis

- less emotionally expressive
- less energetic
- less talkative and verbally expressive
- less humorous
- less imaginative
- less unconventional
- less lively and passionate
- less perceptive
- less likely to connect seemingly irrelevant things
- less synthesizing
- less likely to see things from a different angle
- less able to elaborate - expand idea in novel way
THE ME ME ME ME ME ME GENERATION

Millennials are lazy, entitled narcissists who still live with their parents

Why they'll save us all

BY JOEL STEIN
Tightrope

- coddled, protected, dependent
- help seeking
- immature
- most inflated high school grades
- lower time spent studying
H S Seniors Studying 6+ Hours a Week

Percentage

High GPA
Parents are going to ludicrous lengths to take the lumps and bumps out of life for their children. However well-intentioned, parental hyperconcern and microscrutiny have the net effect of making kids more fragile. That may be why the young are breaking down in record numbers.
grown up
digital

how the
net generation
is changing
your world

DON TAPSCOTT
Digital Natives, Digital Immigrants

By Marc Prensky

From On the Horizon (NCB University Press, Vol. 9 No. 5, October 2001)
© 2001 Marc Prensky

It is amazing to me how in all the hoopla and debate these days about the decline of education in the US we ignore the most fundamental of its causes. Our students have changed radically. Today’s students are no longer the people our educational system was designed to teach.
● “Cocooning”
● Difficulty disconnecting
● Addicted?
● FOMO
● Class issues

Attending
Participating
Cheating?
The Digital Mind

- A new model of learning and knowing
- “Search is the new learn.”
- “Find is the new know.”
- Filtering, not mining
- Locating, not remembering
- Find, filter/evaluate, apply
- “There should be an app for that.”
- Knowledge based/connected workplace
- Tech necessary for engagement
- Credibility outcomes.

www.taylorprograms.com
Generation 2.0

- Not a major generational shift
 - Like Boom to X, or X to NeXt
- Like NeXt, only more tech enmeshed
- Xer parents
 - Preparing their kids to be scrappy?
 - More focus on effort, less on talent?
 - Fewer “special flowers”?
 - More interest in safety/security
- NeXter parents
 - Getting lots of help from their parents
- Relentlessly diverse
 - Keep everyone honest.
Most faculty work long and hard. We care about educating our students. Thanks to our efforts, many of them experience deep personal transformation during their college years.

However, when we subject the quality of our collective work as educators to the same close examination we demand in our disciplines, we find a substantial body of evidence that clearly demonstrates a crisis of educational quality in our nation's colleges and universities.

to begin immediately to assess, evaluate, and improve the quality of our work.

Fortunately, this improvement is as possible as it is urgent. The professional research literature in higher education can easily provide us with valuable information we can use to understand more fully our effectiveness as educators—if we would only use it.

In this article, I hope to acquaint readers with important research that has been done over the past three decades on how stu-
Declining by Degrees
HIGHER EDUCATION AT RISK
Academically adrift
Limited Learning on College Campuses
Richard Arum and Josipa Roksa
IVORY TOWER

IS COLLEGE WORTH THE COST?

IN THEATERS JUNE 13, 2014
Workplace readiness

“a pandemic of workplace unreadiness as today’s graduates are unable to think long term, handle details or delay gratification”

Mel Levine 2005

“Ready or not, here life comes”
TIME

• “Most colleges are seriously out of step with the real world in getting students ready to become workers in the postcollege world”.

From Teaching to Learning -

A New Paradigm for Undergraduate Education

By Robert B. Barr and John Tagg

The significant problems we face cannot be solved at the same level of thinking we were at when we created them. -Albert Einstein

A paradigm shift is taking hold in American higher education. In its briefest form, the paradigm that has governed our colleges is this: A college is an institution that exists to provide instruction. Subtly but profoundly we are shifting to a new paradigm: A college is an institution that exists to produce learning. This shift changes everything. It is both needed and wanted.

A new pedagogy?

www.taylorprograms.com
Six Things to Know About Faculty

• People of good will who want students learn
• May have other priorities than teaching
• Discipline experts
• May have limited training in teaching best practice
• Probably reflective intellectuals
• May teach the way they were taught.
Most college courses represent a systematic failure to create a learning environment that promotes meaningful, lasting student development.

Students are not learning even basic general knowledge, they are not developing higher-level cognitive skills, and they are not retaining their knowledge.

In fact there is little evidence of a significant difference between students who take courses and student who do not.

Why learn?

John Tagg 2004
Teaching Generation NeXt: A Pedagogy for Today’s Learners

- Learning outcomes
 - Knowledge, Skills, Values
 - High level, functional, lasting
- Compliance
- Responsibility
- Activity
- Engagement
- Efficiency
 - Best use of time
 - Match methods to learners and goals
- Learning options/ especially digital.
Learning

- **Creating**
 - make, develop, produce, invent, compose
- **Evaluating**
 - judge, support, rank, persuade, critique
- **Analyzing**
 - compare, contrast, break down, steps, diagram
- **Applying**
 - do, give examples/illustrate, solve, predict
- **Understanding**
 - explain, paraphrase, describe
- **Remembering**
 - recall, name, list, recognize, recite
Abandon the Traditional Pedagogy

Lecture around low level content to passive students who are often disengaged from class and the course material, remembering just to pass a test.

Which is pretty clearly not working.
Flip the Class Move to Best Practice

- Students are **ACTIVE**
 out of and in class

- Students are **ENGAGED**
 with the class content and in class

- Students are **RESPONSIBLE**
 for preparation before class and for working during class

- Learning moves to **HIGHER LEVELS**
 from recall to applying and evaluating

- Leverages **TECHNOLOGY**
 to for content out of class and during class.
<table>
<thead>
<tr>
<th>Technique</th>
<th>Not familiar enough to rate</th>
<th>Familiar but not relevant, or have not tried</th>
<th>Tried</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flipped classroom</td>
<td>6%</td>
<td>47%</td>
<td>17%</td>
<td>29%</td>
</tr>
<tr>
<td>Fully online course delivery</td>
<td>9%</td>
<td>57%</td>
<td>7%</td>
<td>24%</td>
</tr>
<tr>
<td>Hybrid courses, with over 30 percent delivered online and in-person</td>
<td>8%</td>
<td>58%</td>
<td>11%</td>
<td>20%</td>
</tr>
<tr>
<td>Incorporating group projects</td>
<td>2%</td>
<td>20%</td>
<td>18%</td>
<td>56%</td>
</tr>
<tr>
<td>Incorporating service learning or other experiential learning</td>
<td>14%</td>
<td>49%</td>
<td>13%</td>
<td>23%</td>
</tr>
<tr>
<td>Team-teaching classes across two disciplines or subjects</td>
<td>13%</td>
<td>63%</td>
<td>12%</td>
<td>10%</td>
</tr>
<tr>
<td>Using external (paid) materials to augment content</td>
<td>18%</td>
<td>49%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Using open-source (free) materials to augment content</td>
<td>14%</td>
<td>42%</td>
<td>16%</td>
<td>27%</td>
</tr>
<tr>
<td>Using standardized-assessment tools to gauge student performance</td>
<td>9%</td>
<td>48%</td>
<td>12%</td>
<td>27%</td>
</tr>
<tr>
<td>Using tools such as Skype or video to encourage in-class or real-time interactions</td>
<td>9%</td>
<td>63%</td>
<td>13%</td>
<td>15%</td>
</tr>
<tr>
<td>Using tools such as social media or discussion forums to encourage participation outside class</td>
<td>9%</td>
<td>56%</td>
<td>12%</td>
<td>20%</td>
</tr>
<tr>
<td>Using “clickers” or other means to obtain student responses in real time</td>
<td>11%</td>
<td>64%</td>
<td>10%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Evaluation Protocols

Students
- Listening
- Transcribing
- Individual thinking
- Clicker question discussion
- Worksheet group work
- Other group work
- Answer question
- Student’s question
- Whole class discussion
- Predicting
- Student presentation
- Test/quiz
- Waiting
- Other

Faculty
- Lecturing
- Writing
- Directing class behavior
- Answering questions
- Pose question
- Peer instruction
- Other clicker question
- Activity instruction
- Moving guiding
- One-on-one
- Demonstration
- Administration
- Waiting
- Other
Three Core questions

- What is the goal/ desired outcome?
 Knowledge, Skills, Values
 Remember, Understand, Apply, Analyze, Evaluate, Create

- How much time do I have?
 This semester?
 Course of the program?
 Time in class?
 Time out of class?

- How should we use this time to reach these goals?
 Their preparation for class
 What we do during class time
 What they do during class time.
Improved Learning in a Large-Enrollment Physics Class

Louis Deslauriers,1,2 Ellen Schelew,2 Carl Wieman*†‡

We compared the amounts of learning achieved using two different instructional approaches under controlled conditions. We measured the learning of a specific set of topics and objectives when taught by 3 hours of traditional lecture given by an experienced highly rated instructor and 3 hours of instruction given by a trained but inexperienced instructor using instruction based on research in cognitive psychology and physics education. The comparison was made between two large sections ($N = 267$ and $N = 271$) of an introductory undergraduate physics course. We found increased student attendance, higher engagement, and more than twice the learning in the section taught using research-based instruction.
The Flipped Classroom

- **Content delivery** is moved out of class
 Especially on-line and/or matches learning styles
- Increases student **responsibility**
 Assignments must be completed before class
 Homework “ticket-in” to class activity
- **Engaging** small group discussions
 Applications of content and problem solving
- Students are **Active** in class
 Finding the words they need hear to understand content, see how to use it, come to value it.
Flipped class objectives

1. List all the objectives of a unit.
 Use your active verbs from Blooms

2. Rank them from least complex (remembering, understanding) through more complex (applying) to most complex (analyzing, evaluating, creating)

3. Ask “What is the highest level/most complex task I can reasonably expect students to be able to “master” before they come to class?”
 What resources do I need to make available to them to make that happen?”
 How can they self assess on their mastery before class?
 How can I assess when they get to class?
Teaching Generation NeXt: A Pedagogy for Today’s Learners

1. Improve student’s future orientation
2. Identify class goals/ link to student’s goals
3. Improve student understanding of class expectations
4. Move content learning out of class
5. Create the necessity of preparing for and attending class
6. Increase classroom activity and engagement
7. Improve assessments and accountability.
Interactive Model

- Reflect
 Think about it
- Pair
 Discuss with your partner
- Square
 Two pairs come together
- Share
 Report out to the class
1. Improve student’s future orientation.

2. Identify class goals/ link to student’s goals
 - Reaches ahead to assessment
 - “Menu of Benefits”
 - Efforts to develop menu of benefits?
 - Use of menu of benefit?
 - Offer possible benefits/ outcomes of the class
 - Pick three most important to you
 - Convince your partner yours matter.
Brainstorming Benefits

- Basic physical needs
 find work, get money to feed / provide for self and others

- Safety/ security
 money, stable work, safe areas to live, not be tricked or taken advantage of

- Belonging/ acceptance
 how others see you, people you associate with, quality of interactions

- Esteem/ achievement
 money, status, success, advancement to do well, the best you can do, being the best in the world

- Meaning/ self actualization
 Purpose/ impact- doing what you were meant to do, making a difference, best for the world.
1. Improve student’s future orientation
2. Identify class goals/ link to student’s goals
3. Improve student understanding of class expectation
 - “What has worked in the past should work now.”
 Academic effort of high school not sufficient for most students in college.
 - “People are disgruntled by surprises, not expectations.”
 - Spend more time processing class/ academic expectations.
Why students resist

- What you can predict you can prevent
- Students are well socialized to the delivery model
 - Many high schools are not learning centered
 - Active learning may not look like “school” to them
- “Learning” may not be students’ priority attending college
 - Don’t assume they see value in your outcomes, that your outcomes are worth working for
- Students don’t want to give more effort or take risks
 - Activity in learning is work, and exposing
- Would prefer not to be responsible for their learning
 - Want you to tell them what is going to be on the test
 - (Which is one thing you do have to do.)
1. Improve student’s future orientation
2. Identify class goals/ link to student’s goals
3. Improve student understanding of class expectation
 - Prepare/ Attend
 - Pay attention/ Stay engaged
 - Participate in activities
 - Cooperate/ Be accountable
 - Same level of science to teaching as to profession
 - How to be a successful learner in this class.
Metacognition

- **Effort** - whoever does the work does the learning
- **Activity** - do something with content
 - write, outline, summarize, diagram, draw
- **Communicate** - work with others, explain
- **Focus, pay attention** - decrease distractions
- **Repetition** - practice to maintain content, develop skills
- **Platforms** - use multiple “media”
- **Engagement** - why learn this?, work to make sense of what you are learning
- **Self-assess** - check yourself before you wreck yourself.
Student Responsibility Questionnaire

1. What is your future goal?
2. Predict your grade for this class
3. To get that grade I intend to
 - Prepare for class at least ___ time before each class meeting
 - Study effectively
 quiet, distraction free, focused, repetitive, active
 - Use a variety of preparation resources
 - Attend class every session
 - Bring assigned preparation to class
 - Bring all necessary materials to class
 - Pay attention during class
 - Work with others during class, and out of class as needed
 - Review “homework” after class
 - Prepare for test and assessments throughout the term
 - Review tests
 - Seek outside assistance as necessary
 from instructor, tutoring, student services, etc.
1. Improve student’s future orientation
2. Identify class goals/ link to student’s goals
3. Improve student understanding of class expectations
4. Move content learning out of class

Mazur’s “Information Gathering
Their initial introduction to the content
Even introduction to skills...
Where is content available?
You don’t have to say it to hold them responsible for it.
Teaching Generation NeXt: A Pedagogy for Today’s Learners

1. Improve student’s future orientation
2. Identify class goals/ link to student’s goals
3. Improve student understanding of class expectations
4. Move content learning out of class
5. Create the necessity of preparing for and attending class.
Must Prepare and Attend

- Is it legitimate to expect students to prepare for class?
- Do students prepare for class to your satisfaction?
- Can students be successful if they don’t prepare?
- Can you do more if students prepare?
- If they have real need for information in class, they will bring it
- Increases repetitions
 Number of times students interact with material
 Better remembering
 Deep, lasting learning.
Ensuring Preparation

- Use content during class
 Make very clear
- What preparation is required
 Options for preparing
- How preparation will be assessed
 Before class
 Course mgt. system, post/ respond
 In class
 Check homework, quiz, etc
- Preparation worth 25% of grade
 Only “redeemable” in class
- Must prepare to participate in the class activity, also worth 25% of grade.
Teacher talk

- Not revoking your right to speak
- Your explanations are so good!
- How much class time should you spend transmitting…
- Don’t just deliver content
- “Could I do this on tape?”
- “Could this be in my voice over slide set?”
Teacher talk

- Clarify- Check for comprehension
- Application- what can they do with it?
 What is the use/ utility for them now/ in future?
 How does this relate to something happening now?
- Evaluation- good or bad, useful or not useful, future application improves evaluation, affective level
- Teach critical thinking
 Illustrate “how to think like a…”
 The COLLECT the dots
 You CONNET the dots.
1. Improve student’s future orientation
2. Identify class goals/ link to student’s goals
3. Improve student understanding of class expectations
4. Move content learning out of class
5. Create the necessity of preparing for and attending class
6. Increase classroom activity and engagement
Activity Increases Learning

- **Knowledge**, content, information
 They explain it
 Peer instruction

- **Skills** applications, “use”, doing
 They demonstrate it
 Perfect practice

- **Values** caring, worth, (ethics)
 What can I do with this that will help me?
 They convince a peer.
Critical thinking

- The Holy Grail
- “Problem solving”
- Evaluate and use new information
- One critical thinking model?
- Multiple models from disciplines
- Think like a ____
 - Profession
 - “Liberal arts”
 - Scientific method
 - Business world view
 - Art appreciation
 - English- critical reading
 - Historical analysis and relevance
 - Postmodern global awareness...
Architecture

- Content capture/ archive/ access resources and skills
- Administrative support, expectation of student resistance
- Course evaluations- assessments of best practice, not customer service
- “Colleague” support- general adoption so best practice moves from experimental to standard practice
- Adjunct issues- guidelines and “turn key” courses.
The Transition

- Experiment with content capture
 - integrity, Versal, voice over presentation slides
- Increase student responsibility
 - assignments
- Get them talking to each other during class.
 - Explain content
 - Demonstrate
 - Talk about value/ worth
Teaching for lasting change

- **The Utility Imperative**
 - what can I do with this information?
 - how will this skill help me reach a goal/ benefit me in the future

- **Engagement**
 - engage with technology/ choices out of class
 - engage with activity/ interaction in class

- **Activity**
 - increases learning at all levels
 - is construction- builds knowledge, skills, values
 - increases integration, engagement, persistence

- **Learning options**
 - offering choices that increase chances for success
 - peer learning/ interaction crosses styles

- Leverage technology
 - the new thinking; filtering; not mining
 - content out of class
 - engagement during class.
Classes and Knowledge Based Workplace Readiness

- **Attend**
 - timely, fully, always
- **Comply**
 - directions/ rules
 - preparation
- **Interact**
 - collaborate, cooperate
- **Produce**
 - purpose, outcomes
- **Problem solve**
 - critical/ higher order thinking
 - act on a plan.
Questions/ Comments? Resources? Handout?

Dr. Mark Taylor
www.taylorprograms.com
mark@taylorprograms.com