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Abstract 

In response to climate change, a primary objective of electric energy policy is the 
transition to renewable electricity generation. Electricity generation and climate change 
represent a coupled human-natural system when fuel sources for generation are 
nonrenewable (e.g., coal). What remains unstudied in the United States is which states 
have nonrenewable electricity generation not coupled with climate. Further, while the 
management discipline has investigated the electric power industry within a context of 
climate change, to the best of our knowledge the inquiries have not integrated climate 
science. To address the two knowledge gaps, this study investigates state-level: (1) 
changes to climate (1981-2020) and (2) climate and nonrenewable electricity generation 
interrelations (2001-2020). Climate and climate change are operationalized as cooling 
and heating degree days, or the number of degrees above/below a temperature 
threshold. Results indicate (1) all states observed a warming climate, and (2) climate 
improved retrospective forecasts for 36 of the 48 United States. The latter finding 
indicates that nonrenewable generation was coupled with climate for 75% of the 
observations. Since law makers and regulators provide oversight for the electric power 
industry, domestic and international policy implications are discussed. 

Introduction 

Climate change is a salient, discipline-spanning phenomenon that impacts economies 
and ecosystems (e.g., IPCC 2021). One industry that creates barriers to climate change 
response is the electric power industry. The contributions of electricity generating 
organizations to climate change (e.g., Fia & Omorim, 2022; Heede, 2014; Reidmiller et 
al., 2018) as well as attempts to maintain business-as-usual (e.g., Delmas et al., 2016; 
Supran & Oreskes, 2021) are well-established. In response, state and federal policies in 
the United States are facilitating transitions toward renewable electricity generation 
(e.g., National Conference of State Legislatures [NCSL] 2023; Newell et al., 2019). The 
electric power industry has received considerable attention by the management 
discipline, including within a climate change context (e.g., Delmas et al., 2016; Dutt & 
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Joseph, 2019; Dutt & Mitchell, 2020; Holburn & Zelner, 2012; Kim & Youm, 2017). What 
remains understudied by the discipline, however, is the application of climate science to 
investigations of the electric power industry.  

To address this knowledge gap, the study presents the case of the United States 
electric power industry to explore the interconnections between nonrenewable electricity 
generation and climate. Electricity generation is among the largest contributor to global 
carbon emissions, the primary driver of anthropogenic climate change (Heede, 2014; 
IPCC, 2021). With temperatures warming as a process of climate change (e.g., IPCC, 
2021), our study provides a fertile case to study the complex interrelations between 
climate and the electric power industry’s continued reliance on fossil fuels.  

Climate change is operationalized using the cooling degree days (CDD) and heating 
degree days (HDD) (1981-2020). Degree days are the number of degrees above or 
below a baseline temperature, typically 65º Fahrenheit (º F) in the United States (NOAA, 
2022). Degree days are more reliable than temperature alone for modeling energy 
(Mourshed, 2012). The study dependent variable is monthly state-level nonrenewable 
generation (2001-2020). The operationalization allows us to investigate state-level (1) 
changes to climate over the span of four decades and (2) interrelations that CDD/HDD 
have with nonrenewable electricity generation using retrospective forecasting.    

Looking forward, the study overviews select literature related to (1) weather, climate, 
and climate change and (2) electricity generation and climate change. Next are (1) 
materials and methods, (2) results and analysis, and (3) discussion and conclusion 
sections.    

Weather, Climate, and Climate Change 

Weather, climate, and climate change are interrelated but not synonymous. For 
example, today’s temperature is a measure of weather whereas the multiple decades 
average of temperature is a measure of climate. Climate change refers to the departure 
from long-term weather averages (i.e., climate) over the span of decades. Long-term 
warming has been observed in the United States and throughout the world (e.g., IPCC, 
20021; NOAA, 2021; Reidmiller et al., 2018) and without intervention is projected to 
continue through 2080-2099 in the United States (Petri & Caldeira, 2015).  

Warming temperatures are exposing vulnerabilities of the electric power industry to a 
changing climate (Golub et al., 2022). The climate measures most closely related to 
warming and electricity generation are CDD and HDD. Degree days “are more reliable 
indicators than temperature alone when considering electricity” (Craig & Feng, 2016, p. 
603). For this reason, financial markets created CDD and HDD options that electricity 
generating organizations can purchase to hedge against the financial risks of a warming 
climate (CME Group, 2016). CDD and HDD are calculated using daily temperature, 
where degrees above a 65ºF baseline are counted (EPA, 2021). The 65ºF baseline is 
the cutoff used by the National Weather Service in the United States (NOAA, 2022). For 
instance, a 100ºF day is equivalent to 35 CDD. CDD and HDD are calculated for the 
contiguous United States to (1) establish long-term change from 1981 to 2020 and (2) 
match with monthly state-level electricity generation data. CDD and HDD are preferable 
to average temperature when the resolution of data is monthly (e.g., electricity 
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generation) because the counts above the threshold better capture within month 
variability than average temperature.  

To observe interrelations between climate, climate change, and organizational metrics 
for the electric power industry (i.e., non-renewable electricity generation) requires the 
application of climate science. Management scholars have demonstrated an interest in 
these interrelations, though to the best of our knowledge, have not integrated climate 
science into the explorations (e.g., Delmas et al., 2016; Weinhofer & Hoffman, 2008). 
For example, Delmas et al. (2016) analyzed contributions of “dirty” firms (e.g., those in 
the electric power industry) to regulatory lobbying efforts. Weinhofer and Hoffman 
(2008) considered CO2 emissions for electricity producers, though did so through the 
lens of strategy adaptation, not climate and emissions interrelations. We address this 
research gap as the first known study within a managerial context to apply climate 
science to the investigation of the electric power industry. Encouragingly, there have 
been a few studies in management journals that utilized climate science to study the 
alpine ski industry (Tashman & Rivera, 2016; Rivera & Clement, 2019), so there is 
precedent for our study’s operationalization.   

Electricity Generation and Climate change 

Globally, energy generation remains the largest contributor to carbon dioxide (CO2) 
emissions ahead of transportation (Richie et al., 2020). Consequently, warming 
temperatures from climate change contributes to increased demand for electricity 
generation, especially in summer (e.g., air conditioning) (Mideksa & Kallbekken, 2010; 
Lundgren-Kownacki et al., 2018). Organizations that generate electricity are coupled 
with the natural environment, contributing to climate change (e.g., CO2 emissions) while 
being influenced by the effects of climate change (e.g., Chen &Chen, 2017; Liu et al., 
2007; McFarland et al., 2015). For example, an increase in temperature requires 
additional electricity generation, and when this generation is from fossil fuel sources 
(e.g., coal, natural gas, other nonrenewable gases, petroleum), more GHG is omitted 
into the atmosphere contributing to climate change.  

The historical interrelations between nonrenewable electricity generation and climate 
change are representative of a coupled human-natural system with feedback loops 
between the two (Lui et al., 2007). The goal of renewable energy policy and targets is to 
uncouple the feedback loops where organizational processes (e.g., electricity 
generation) no longer negatively contribute to climate change (e.g., Jiang et al., 2023). 
Since climate influences electricity generation, and is changing as a process of climate 
change, electricity generation investigations (past, present, and future) should include 
observed historical, forecasted (future short-term), and projected (future long-term) 
conditions. The study begins this inquiry by retrospectively investigating (1) changes to 
CDD and HDD over four decades and (2) the influence of CDD and HDD on GHG 
emitting nonrenewable electricity generation.   

Research Question 1: What state-level changes to CDD and HDD are 
observed (1981-2020)?  

Research Question 2: Where do CDD and HDD improve retrospective 
nonrenewable generation forecasts (2001-2020)?  
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Materials and Methods 

Electric Generating Organizations 

Our sample consists of electric utilities (n=2,938) and independent generators 
(n=unknown) that generate and distribute electricity (EIA, 2019b). There are three types 
of electric utility organizations: publicly owned utilities (POU; 67%), cooperative utilities 
(non-profit; 28%), and investor owned utilities (IOU; 6%) (EIA, 2019b). Comparatively, 
IOUs serve over 70% of United States consumers. Independent electricity generators 
are legal entities that own/operate electricity generation facilities for public use that are 
not themselves utilities (EIA, 2021a). Independent generators provide electricity to 
utilities for distribution and also electricity to large commercial/industrial consumers.  

Data 

There are two sources of data used for the analysis: climate and electricity generation. 
First, the study operationalized climate using cooling CDD and HDD. To calculate 
degree days we obtained daily maximum temperature at approximately the four-
kilometer grid cell resolution for the contiguous United States from 1981 to 2020 (Di 
Luzio et al., 2008). Consistent with NOAA’s (2022) operationalization of CDD and HDD 
the daily maximum and minimum temperature were arithmetically averaged to get daily 
values where degrees above and below 65ºF were counted, respectively. The grid-level 
CDD and HDD data were then aggregated to state-level means based on coordinates 
using “map2SpatialPolygons” function in “maptools” package and “SpatialPoints” 
function in “sp” package in R. Data from 1981 to 2020 were used to establish climate 
change, and data from 2001 to 2020 was used to match with state-level electricity 
generation to conduct retrospective forecasting.  

Second, state-level monthly electricity generation data were obtained from EIA (2021b) 
from 2001 to 2020. Generation data for electric power generators and distributors (i.e., 
utilities and independent electric generators) were then aggregated for all nonrenewable 
fuel sources (i.e.,, coal, natural gas, other nonrenewable gas, petroleum). Units for 
generation are megawatt hours (MWH), or 1,000 kilowatt hours.  

Statistical Analysis 

To test Research Question 1, graphs were produced comparing the most recent 10-
years of climate data to the first 10-years of climate data of the analyzed period. This is 
a commonly used method to detect climate change over the span of decades (e.g., 
IPCC, 2021).  

To test Research Question 2, Autoregressive Integration Moving Average (ARIMA) 
models were utilized. ARIMA is a retrospective forecasting method that explores past 
states of a time series on current and future states allowing for the inclusion of factors 
external to the time series (Craig & Feng, 2016). Our two focal external factors are CDD 
and HDD, measures of climate. To capture the meteorological seasonality inherent to 
electricity generation the study used seasonal ARIMA (i.e., SARIMA) (Tripathi et al., 
2008). For climate-related phenomenon where seasonality is inherent (e.g., energy 
supply and demand) SARIMA models produce more accurate predictions (Kaur & 
Ahuja, 2019; Kuru & Calis, 2019; Tadesse & Dinka, 2017) and have proven useful to 
assess electricity markets (e.g., Rostamnia & Rashid, 2019). The SARIMA retrospective 
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method allows us to examine the relative improvement of forecast accuracy with the 
inclusion of CDD and HDD compared to forecasts based on historical generation data 
alone. Implicitly captured within historical electricity generation are influencing factors 
such as consumption, other economic factors (e.g., population, income), transmission, 
and plant efficiency.  

The “lmtest,” and “forecast” packages in R were used for model selection criteria and 
model statistics, applying the Akaike Information Criterion (AIC) to minimize overfit and 
underfit models. Three SARIMA models were computed for each state sorted by 
nonrenewable and renewable generation types that included: (1) the univariate 
retrospective electricity generation data, (2) CDD as the exogenous factor, and (3) HDD 
as the exogenous factor. For each model 19 years of data (January 2001-December 
2019) were used as training datasets to build the model, and then used the model to 
predict electricity generation in the last one year (January 2020-December 2020). 
Finally, the model prediction values were compared with the actual observation during 
the last one year to test the model accuracy. Performance of the SARIMA models was 
assessed using the Root Mean Square Error (RMSE). RMSE is an absolute measure of 
fit, meaning the RMSE values in Table 1 actual MWH (reported in the ,000s; see Table 
1). The absolute values allow us to determine percentage improvement/decline of 
models without and with weather (i.e., CDD and HDD). States where improvement 
occurred indicate that nonrenewable electricity generation and climate (i.e., the 
consequence of climate change) remain coupled.  

SARIMA models consist of four terms: (1) automatic regression (AR), (2) integration (I), 
(3) moving average (MA), and (4) seasonal (S). The AR terms aims to model the current 
observation against previous observations; the MA terms aims to model the current 
observation against previous process errors; the I term aims to stabilize un-stational 
series; and the S term indicates previous seasons are taken into account. The SARIMA 
model notation is (p,d,q)(P,D,Q)[s] where (p) is the non-seasonal linear AR, (d) is the 
non-seasonal difference, (q) is the non-seasonal MA, (P) is the seasonal linear AR, (D) 
is the seasonal difference, (Q) is the seasonal MA, and (s) is the length of seasonality. 
The d and D parameters are greater than 0 when the series is not stationary.  

For example, the notation for the nonrenewable generation SARIMA model in Kentucky 
with CDD as the exogenous factor is (1,0,1)(0,1,1)[12] (see Table 1). This is interpreted 
as (p) one AR lag (e.g., July’s generation is related to June’s generation), (d) zero 
differencing for the stationary time series (e.g., 19 years of training data are stable), (q) 
one MA lag (e.g., July’s forecast error is related to June’s forecast error), (P) zero lags 
to the stationary time series (e.g., July 2020 nonrenewable generation is not related to 
July generation in previous years), (D) one seasonal difference is needed to stabilize 
the time series, (Q) one MA lag (e.g., July 2020 forecast error is related to July 2019 
forecast error), and (s) there are 12 intervals for the monthly data.   

Results and Analysis 

Research Question 1 

A map was produced to demonstrate changes to CDD and HDD from 1981 to 2020 for 
state-level climate. As visualized in Figures 1 and 2, changes were calculated by 
comparing the most historic running 10-years of observations (i.e., 1981-1990) to the 
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most recent 10-years of observations (i.e., 2011-2020). These results are consistent 
with the trends in CDD and HDD projected by Petri and Caldeira (2015) through the end 
of the century. There were observed changes for each state, with the smallest changes 
for both CDD and HDD in North Dakota. The most intense changes for CDD were in the 
lower-latitude states. 

Figure 1. Change in Cooling Degree Days (CDDs) (2011-2020 minus 1981-1990) 
 

 
 

Research Question 2 

Results from SARIMA models reveal that for nonrenewable generation, CDD and HDD 

improve forecast accuracy for the majority of states (Table 1). That is, most (75%) 

states remain coupled (i.e., interrelated) to climate. The RMSE decreased when adding 

the exogenous CDD and HDD for most states, an indication of the direct effect of 

climate on MWH generation from nonrenewable sources. For models with CDD, there 

was an improvement in explanations of MWH for 28 states, no change for two states, 

and a decline for 18 states. For models with HDD, there was an improvement in 

explanations of MWH for 23 states, no change for 11 states, and a decline for 14 states. 

The two states where CDD had the greatest effect on MWH forecasts are Alabama 

(424,000 MWH, 29% model improvement) and Kentucky (396,000 MWH, 39% model 

improvement); the two states where HDD had the greatest effect are Texas (329,000 

MWH, 15% model improvement) and Kentucky (256,000 MWH, 25% model 
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improvement). Across the contiguous United States, CDD contributed to 2.5 million 

MWHs generated and HDD 687,000 in 2020 alone. 

Figure 2. Change in Heating Degree Days (HDDs) (2011-2020 minus 1981-1990) 
 

 

Total, 36 of the 48 states (75%) remained coupled to CDD and/or HDD. Eight of the 12 
states (67%) that observed uncoupling had mandatory Renewable Portfolio Standards 
in place (see Table 2) (NCLS, 2023). These states (1) demonstrate that mandatory 
commitments to renewables can negate relationships shared between weather and 
nonrenewable generation, and (2) offer exemplary examples of mandatory renewable 
policy that has been successful. For the remaining states, results should be interpreted 
with caution. First, AR, KS, and WY all export substantial amounts of electricity to other 
states (EIA, 2023a). Second, KS is the third largest wind producer in the United States 
(EIA, 2023b). Comparatively, AR and WY only produce around 8% of electricity from 
renewables (EIA, 2023c, d). Large infrastructure investments are linked to decoupling 
the relationship with climate change (e.g., Gates, 2021), a possible explanation for 
uncoupling in KS. And third, LA is one of the most consumptive states in the United 
States due to energy-intensive industries (e.g., chemical, petroleum) (EIA, 2023e), 
industries that are not inherently exposed to climate. 
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Table 1. SARIMA Models for Nonrenewable Generation, CDD, and HDD from 2001 to 2020. 

State Abb. SARIMA non-renewable SARIMA w/ CDD SARIMA w/ HDD RMSE non-renewable 
RMSE w/ 

CDD 
%Δ MWH # Δ MWH 

RMSE w/ 
HDD 

%Δ 
MWH 

# Δ 
MHW 

AL (0,0,3)(0,1,1)[12] (5,1,1)(1,0,0)[12] (0,0,3)(0,1,1)[12] 1474 1050 29% 424 1474 0% 0 

AZ (1,0,1)(0,1,1)[12] (2,0,1)(1,1,2)[12] (1,0,1)(0,1,1)[12] 482 527 -9% -44 482 0% 0 

AR (1,0,0)(0,1,1)[12] (2,1,3)(1,0,0)[12] (1,0,0)(0,1,1)[12] 1038 1104 -6% -66 1059 -2% -22 

CA (1,0,2)(1,1,1)[12] (4,0,2)(1,1,2)[12] (1,0,2)(1,1,1)[12] 715 713 0% 2 715 0% 0 

CO (1,0,2)(2,1,2)[12] (2,0,2)(1,1,1)[12] (1,0,2)(0,1,1)[12] 493 515 -4% -21 492 0% 1 

CT (3,0,0)(1,1,1)[12] (1,1,1)(0,0,2)[12] (1,1,1)(2,0,0)[12] 238 108 54% 129 154 35% 84 

DE (1,0,0)(2,0,0)[12] (1,0,0)(1,0,0)[12] (1,0,0)(2,0,0)[12] 138 104 25% 34 136 1% 2 

FL (1,0,0)(2,1,0)[12] (1,1,1)(2,0,0)[12] (1,0,0)(2,1,0)[12] 815 530 35% 285 859 -5% -44 

GA (2,0,2)(0,1,1)[12] (2,1,4)(1,0,0)[12] (2,0,1)(2,1,1)[12] 1330 1101 17% 229 1336 0% -5 

ID (1,0,0)(1,1,1)[12] (2,0,0)(1,1,1)[12] (2,0,0)(1,1,1)[12] 61 60 2% 1 59 4% 2 

IL (1,1,1)(1,1,0)[12] (0,1,2)(1,1,0)[12] (1,1,1)(1,1,0)[12] 1304 1051 19% 253 1195 8% 109 

IN (0,0,3)(0,1,1)[12] (2,0,2)(0,1,1)[12] (0,0,1)(0,1,1)[12] 1105 936 15% 169 1104 0% 1 

IA (1,0,2)(0,1,1)[12] (4,1,0)(1,0,0)[12] (1,0,2)(0,1,1)[12] 715 530 26% 184 684 4% 31 

KS (2,1,2)(0,1,1)[12] (2,1,2)(2,0,0)[12] (2,1,1)(0,1,1)[12] 198 203 -3% -5 207 -5% -9 

KY (0,0,3)(0,1,1)[12] (2,1,1)(0,1,1)[12] (1,0,1)(0,1,1)[12] 1023 626 39% 396 767 25% 256 

LA (1,0,1)(2,1,1)[12] (5,1,0)(2,0,0)[12] (1,0,2)(2,1,1)[12] 590 626 -6% -36 602 -2% -12 

ME (2,1,1)(2,0,0)[12] (1,1,2)(1,0,0)[12] (2,1,1)(2,0,0)[12] 68 40 42% 28 70 -3% -2 

MD (5,1,0)(2,0,0)[12] (2,1,2)(2,0,0)[12] (5,1,1)(2,0,0)[12] 336 346 -3% -10 380 -13% -44 

MA (1,1,1)(2,1,2)[12] (1,1,1)(2,0,0)[12] (1,1,1)(2,0,0)[12] 302 319 -6% -17 322 -7% -20 

MI (0,0,3)(0,1,1)[12] (1,1,2)(0,0,2)[12] (0,0,3)(0,1,1)[12] 1212 1222 -1% -10 1212 0% 0 

MN (1,0,1)(1,1,0)[12] (3,0,1)(0,1,1)[12] (3,0,1)(0,1,1)[12] 594 559 6% 35 579 3% 16 

MS (1,0,0)(1,1,1)[12] (1,1,1)(2,0,0)[12] (1,0,2)(1,1,1)[12] 331 418 -26% -87 262 21% 70 

MO (2,1,2)(1,1,2)[12] (2,1,3)(1,1,2)[12] (2,1,2)(1,1,2)[12] 603 584 3% 20 631 -5% -27 

MT (0,0,3)(0,1,1)[12] (0,0,3)(0,1,1)[12] (0,0,3)(0,1,1)[12] 511 510 0% 0 511 0% 0 

NE (2,0,2)(0,1,1)[12] (2,0,2)(0,1,2)[12] (1,0,3)(1,1,2)[12] 283 287 -2% -4 239 16% 44 
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NV (2,0,0)(2,1,2)[12] (2,0,0)(2,1,2)[12] (2,0,0)(2,1,2)[12] 195 193 1% 2 191 2% 4 

NH (1,1,1)(0,0,2)[12] (0,1,5)(0,0,1)[12] (1,1,1)(0,0,2)[12] 103 97 6% 6 109 -6% -6 

NJ (2,0,0)(1,1,2)[12] (1,1,2)(0,0,1)[12] (2,0,0)(1,1,2)[12] 1031 969 6% 61 1024 1% 6 

NM (1,0,2)(2,1,1)[12] (1,1,1)(0,0,2)[12] (2,1,1)(2,0,0)[12] 318 326 -3% -8 347 -9% -29 

NY (0,0,4)(1,1,2)[12] (2,1,2)(0,0,2)[12] (3,0,0)(1,1,1)[12] 549 500 9% 49 621 -13% -73 

NC (2,0,0)(1,1,2)[12] (1,0,0)(1,0,0)[12] (1,0,0)(2,1,2)[12] 1173 1127 4% 46 1122 4% 51 

ND (1,0,0)(0,1,1)[12] (1,0,0)(0,1,1)[12] (1,0,0)(0,1,1)[12] 146 147 -1% -1 141 3% 4 

OH (1,0,1)(0,1,1)[12] (2,0,1)(0,1,2)[12] (2,0,2)(0,1,2)[12] 794 816 -3% -22 775 2% 19 

OK (1,1,1)(0,1,1)[12] (1,1,1)(2,0,0)[12] (1,1,1)(0,1,1)[12] 420 477 -13% -56 400 5% 20 

OR (1,0,1)(0,1,1)[12] (1,0,1)(0,1,1)[12] (3,0,2)(0,1,1)[12] 258 260 -1% -2 271 -5% -13 

PA (3,0,0)(2,1,0)[12] (2,0,0)(1,1,0)[12] (2,0,0)(0,1,1)[12] 1358 1159 15% 198 1538 -13% -180 

RI (2,0,2)(0,1,1)[12] (1,1,1)(0,0,2)[12] (1,1,1)(1,0,0)[12] 128 109 15% 19 117 8% 11 

SC (3,0,0)(0,1,1)[12] (4,1,1)(0,0,1)[12] (0,0,3)(0,1,1)[12] 332 251 24% 81 276 17% 56 

SD (1,1,3)(0,0,2)[12] (0,1,2)(0,0,2)[12] (0,1,3)(0,0,2)[12] 88 86 2% 2 88 0% 0 

TN (1,1,1)(1,0,0)[12] (0,1,3)(1,0,0)[12] (1,1,1)(1,0,0)[12] 802 584 27% 218 773 4% 29 

TX (1,0,0)(1,1,1)[12] (3,0,0)(0,1,1)[12] (1,0,0)(0,1,1)[12] 2262 2218 2% 44 1933 15% 329 

UT (2,0,3)(0,1,2)[12] (2,0,3)(0,1,2)[12] (2,0,3)(0,1,2)[12] 325 323 1% 2 324 0% 1 

VT (3,1,1)(1,0,1)[12] (4,1,0)(2,0,0)[12] (3,1,1)(2,0,0)[12] 0 0 40% 0 0 1% 0 

VA (1,1,2)(0,1,1)[12] (1,1,1)(1,1,2)[12] (0,1,2)(0,1,1)[12] 579 641 -11% -63 568 2% 11 

WA (1,0,2)(0,1,1)[12] (1,0,2)(0,1,1)[12] (1,0,2)(0,1,1)[12] 418 414 1% 4 429 -3% -11 

WV (1,0,0)(2,1,0)[12] (1,1,2)(2,0,0)[12] (2,0,2)(1,1,0)[12] 731 717 2% 13 705 4% 26 

WY (2,0,2)(2,1,2)[12] (1,0,0)(1,1,2)[12] (1,0,1)(1,1,2)[12] 448 465 -4% -17 447 0% 1 

*REMSE reported in MWH; MWH reported in ,000s. 

ŧSee https://www.faa.gov/air_traffic/publications/atpubs/cnt_html/appendix_a.html for two-letter state abbreviations 
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Table 2. Uncoupled states 

State Renewable Energy Standard or Target 2017 Primary Affiliations  Designation 

AZ Renewable Portfolio Standard 48%D, 52%R  Competitive 

AR No standards or targets 36%D, 45%R Lean R 

CA Renewable Portfolio Standard 51%D, 30%R Solid D 

CO Renewable Portfolio Standard 46%D, 37%R Lean D 

KS Renewable Energy Goal (expired) 34%D, 48%R Solid R 

LA No standards or targets 40%D, 43%R Competitive 

MD Renewable Portfolio Standard 56%D, 28%R Solid D 

MA Renewable Portfolio Standard 57%D, 26%R Solid D 

MI Renewable Portfolio Standard 45%D, 38%R Lean D 

NM Renewable Portfolio Standard 48%D, 34%R Solid D 

OR Renewable Portfolio Standard 49%D, 34%R Solid D 

WY No standards or targets 27%D, 56%R Solid R 

*2017 affiliations and designations from Gallup (2017) survey; D=Democrat/Lean Democrat; 
R=Republican/Lead Republican  

Discussion 

The widespread attention climate change has received across disciplines is indicative of 
the need for organizations—irrespective industry—to decouple contributions of 
organizational systems (e.g., CO2 emissions) from future climate change. This is 
particularly true for the electric power industry in the United States, an industry long-
known to inequivalently emit CO2 into the atmosphere contributing to climate change 
(e.g., Heede, 2014; Reidmiller et al., 2018). In fact, “decarbonizing the electric sector is 
one of the most cost-effective ways to reduce emissions and can help decarbonize 
other sectors with increased electrification” (Sattler et al., 2022, p. 1). Despite the 
attention management scholars have given to the electric power industry (e.g., Delmas 
et al., 2016; Dutt & Mitchell, 2020), we are not aware of prior investigations of the 
industry inclusive climate science. This study explicitly addresses this research gap.  

Results from our retrospective analysis demonstrate changes to climate (i.e., CDD and 
HDD) in each state when comparing the study’s most historical 10-years (1981-1990) to 
its most modern 10-years (2011-2020; see Figure 1). On the aggregate, results indicate 
climate, are still coupled with nonrenewable electricity generation throughout much of 
the United States (75% of states). Furthermore, the two characteristics for uncoupled 
states were (1) mandatory Renewable Portfolio Standards and (2) extensive clean 
energy infrastructure already in place (e.g., 45% of KS production comes from wind) 
(EIA, 2023b; NCLS, 2023). With federal policy objectives to transition to renewable 
infrastructure in the United States (The Executive Office of the White House, 2021), the 
results are of immediate interest to regulators, policy makers, and leaders in the electric 
power industry. Since the electric power industry on the aggregate has oversight from 
law makers and regulators (EPA, 2010), managerial implications for our findings are 
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primarily policy-based. Below, implications as well as limitations and future research 
sections are provided. 

Policy Implications 

First, state- and federal-level regulators and policy makers should consider making 
renewable energy targets mandatory. This is because mandatory renewable energy 
targets have proven to be more effective than voluntary targets (Delmas & Montes-
Sancho, 2011). For instance, the Executive Office of the White House (2021) issued a 
press release outlining efforts to reduce emissions in 2030 by 50-52% compared to 
2005 levels. Despite the non-binding national target, electricity generation regulation 
primarily occurs at the state-level, overseen by public utility commissions comprised of 
governor appointed or elected commissioners (EPA, 2010). Currently, discrepancies in 
state-level renewable energy targets vary, with 24 of the contiguous states having 
mandatory renewable targets while the other half of the 48 states either have no or 
voluntary targets NCSL (2023). Meeting the binding, mandatory emissions targets 
outlined in the Paris Agreement (United Nations [UN], 2015) will likely require 
mandating renewable infrastructure, whether that be at the federal- and/or state-level. 
For example, the United States (like many other signatory countries) is presently not 
making sufficient progress towards emissions reductions to meet obligations of the 
Paris Agreement (Perdana & Tyeres, 2020).  

A second policy implication is related to the scale of infrastructure. For renewable 
infrastructure to adequately combat climate change it needs to be deployed at a scale 
great enough where generation does not continue to contribute to climate change 
(Gates, 2021; Reidmiller et al., 2018). This is because states that respond to warming 
temperatures with nonrenewable electricity generation also contribute to a warming 
climate (EPA, 2018). The finding that KS—a state the generates almost half of its 
electricity from wind—is uncoupled to nonrenewable generation supports this assertion. 
Looking forward, regulators, policy makers, and the electric power industry alike will 
need to maintain a dual focus on how to transition to renewable fuel sources while also 
producing supply to respond to a changing climate. The manner (e.g., mandatory, 
voluntary), and speed, at which targets are adopted and enacted will be critical to 
uncoupling nonrenewable generation from climate change (Delmas & Montes-Sancho, 
2011; Garcia-Gusano & Iribarren, 2018; Gates, 2021).  

A third implication is related is building policy support among state- and local-level 
policy makers. For instance, Craig and Allen (2014) conducted a state-level survey 
finding Democrats were more supportive of renewable subsidies and adaptation of 
renewable infrastructure by utilities than other party affiliations. When comparing party 
affiliations for uncoupled states (Table 2), other than Arizona (competitive), each state 
with Renewable Portfolio Standards were majority Democrat. Also, attorney generals 
from states reliant on fossil fuels filed a lawsuit against renewable regulatory actions by 
the federal government (Craig, 2018). Comparably, local policy actors who perceive 
fossil fuels as important to local economies are less likely to support renewable 
regulations (Mayer, 2019). To enact large-scale policy will require more wide-spread 
support across the political spectrum in the United States than presently observed. 
Economics losses—real or perceived—are known to counter renewable energy support 
(e.g., Craig & Allen, 2014; Stokes & Warshaw, 2017). For unsupportive parties, 
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messages that highlight renewable policy counters economic threats (if true and 
accurate) are favorable (e.g., Craig & Allen, 2014). Also, Stokes and Warshaw (2017) 
found that messages highlighting pollution benefits were linked to Republican support of 
renewable policy.    

For an international audience, the case of the electric power industry in the United 
States should serve as a cautionary tale. Currently, state-level renewable electricity 
policy is splintered in the United States where some states have aggressive renewable 
targets, while other states (1) lack targets and/or (2) actively oppose federal renewable 
policies (Craig, 2018; DSIRE, 2022). Signatory countries to the binding Paris Agreement 
(UN, 2015) should strive to enact mandatory, federal-level policies to promote the 
consistent adoption and enactment of renewable policies nationally (e.g., Delmas and 
Montes-Sancho, 2011). As our results indicate, a related concern for international 
audiences is the scale at which renewable infrastructure is deployed. For countries with 
states required to annually balance budgets like the United States (NCSL, 1999), it may 
be necessary to enact federal economic policies such as tax credits and subsidies to 
support large-scale investment (Newell et al., 2019).   

Limitations and Future Research 

While this study is novel, it is not without limitations. First, monthly generation data was 
only available from 2001 to 2020 (EIA, 2021b) limiting our ability to demonstrate the 
effects of climate change on electricity generation. However, using historical CDD and 
HDD (i.e., 1981 to 1990) compared to the most recent 10-year period (i.e., 2011-2020), 
climate change was empirically observed. Also, state-level GDP data was only available 
annually, requiring the data to be converted to monthly to run the analysis. Future 
research should utilize higher-resolution data and longer timespans to study 
weather/climate, income, and generation relationships. For example, Takakura et al. 
(2019) introduced a method to reconstruct site-specific hour temperatures at six 
locations in Japan which has the potential to match with site-specific observations at 
generation facilities (if access to high-resolution is made available).    

Second, only state-level data was available from 2001 to 2020 (EIA 2021b). Despite 
initially calculating CDD and HDD (i.e., our focal climate resources) daily using high 
resolution grid cells, data had to be aggregated to monthly and averaged by state to 
match with monthly electricity generation data. Future researchers should seek to (1) 
more closely align geographic locations with climate resource occurrence and (2) match 
performance data at those locations with high resolution climate resource data. It would 
also be helpful for future researchers to expand the number of locations beyond the 48 
states captured in this study.  

Lastly, there are some dynamics in addition to climate and income that the state-level 
datasets do not capture. For instance, some states export generation (e.g., Arkansas) 
and others import generation (e.g., Connecticut). However, most exports go to 
neighboring states that also experience similar climate changes (Karl & Koss, 1984, 
Feng & Hu, 2004). Regardless, states are the regulatorily units responsible for crafting 
and enacting renewable energy policy, meaning the state-level implications remain 
meaningful. Future researchers should strive to more closely match generation with 
location of consumption to better understand the coupled dynamics in the electrical 
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power industry. A related challenge is that the EIA (2021b) only provides national 
consumption data—not state-level—at the monthly temporal resolution. This is a minor 
issue, however, considering that generation and consumption are very highly correlated 
(Craig &Feng, 2017). Other economic data (e.g., population change, GDP) would also 
be useful to include in future studies, though in the United States this data is not 
available at a high enough resolution to match with our monthly climate and generation 
data.  

Conclusion 

A salient goal of renewable energy policy is to uncouple non-renewable electricity 
generation from climate change. For instance, non-renewable electricity generation 
contributes CO2 to the atmosphere where the observable effects are warming 
temperatures. When the electric power industry responds to warming temperatures 
(e.g., increasing CDD, decreasing HDD) with non-renewable generation, the systems 
remains coupled. As evidenced from by our analysis, we observed that the majority of 
states’ non-renewable generation (75%) remains coupled to climate. For the states that 
are uncoupled, two best practices include (1) mandatory state-level renewable policies 
and (2) large-scale development of renewable generation infrastructure. State-level 
policies and electricity generation objectives differ widely in the United States, 
suggesting federal intervention may be necessary. Based on state-level best practices, 
two such interventions include: (1) adopt consistent national renewable electricity 
generation policies and (2) make capital available to states to develop large-scale 
renewable electricity infrastructure projects. 
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