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Abstract 

 

A quantum-mechanical LCAO approach was used 

to derive Pauling’s popular empirical bond valence-

length relationship s = exp((Ro-R)/b), where s is the 

bond order or bond valence associated with bond 

length R, and Ro and  b are fitting parameters.  An 

expression for the b “empirical” fitting parameter is 

derived in terms of atomic orbital exponents.  The b 

parameters calculated from the atomic orbital 

exponents are consistent with optimized b parameters.  

In general, atomic orbital exponents may be used to 

determine bond valence-length relationships for any 

chemical bond regardless of valence state, oxidation 

number, physical or chemical environment.   

In this study, almost two-thousand carbon-carbon 

and carbon-hydrogen bond lengths were evaluated 

from over 40 compounds to yield reliable bond valence 

– bond length relationships for C-C and C-H bonds.  

The atomic orbital exponent for carbon was found to 

be C = 1.651.  Unit valence bond lengths (R0 where s 

= 1) were found to be 1.493 Å for the carbon-carbon 

bond and 1.061 Å for the carbon-hydrogen bond.  

 

Introduction 

 

Linus Pauling’s principle of electrostatic neutrality 

(Pauling 1929), or the law of conservation of valence, 

dictates that the negative charge of each anion in a 

molecule or crystal is neutralized by the positive 

charges of neighboring cations and, conversely, that 

the cationic charges are neutralized by neighboring 

anions. In application, this is recast as the valence sum 

rule which states that the sum of the bond strengths (in 

valence units) around each bonding atom is 

compensated by the total atomic valence Vi 

(1) 

 

where sij is the bond valence for each bond to the atom, 

and Vi is the number of electrons used for bonding 

(sometimes identical to the oxidation state). The sum 

of bond valences around any ion, i, is equal to its 

valence, Vi. 

Bond valence – length empirical correlations have 

been used for many years (Brown and Altermatt 1985; 

Brown 2002; Brown 2009; Pauling 1947; Zachariasen 

1954).  In 1947, Linus Pauling presented his empirical 

bond valence-length expression for carbon-carbon 

bonds 
 

(2) 
 

 

where s is the bond valence, sometimes referred to as 

the bond order or bond number – this is also the 

number of shared electron pairs involved in the bond.  

R is bond length, Ro sometimes defined as the average 

bond length and sometimes as the length of a chemical 

bond having unit valence (s = 1), and b is an empirical 

fitting parameter and sometimes associated with the 

chemical softness of the bond (Adams 2001).  Pauling 

found that b = 0.307 for carbon-carbon bonds (see Eq. 

(2)), but also successfully used this same equation to 

describe metal-metal bonding (Pauling 1947).   

In practice, b and R0 are both adjustable parameters 

found by minimizing the difference between the bond 

valence sums and the atomic valence of the central 

bonding atom. Most values of b have been 

experimentally found to range between 0.25 and 0.65 

Å, but because of limited results, b is often assumed to 

be a universal constant of 0.37 Å which is an average 

of all tabulated values (Brown and Altermatt 1985).  

This common assumption changes Eq. (2) to a one-

parameter fit and makes it easier to use, but severely 

limits the applicability of the relationship, decreasing 

reliability for very short and very long bonds.  In fact, 

there is a large variability in reported b parameters that 

is sensitive to the selection of Ro as well as 

crystallographic data.  Adams (Adams 2004; Adams 

2001) demonstrated that the value of b for a given 
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bond type depends on the arbitrarily chosen maximum 

bond length, and that the bond valence parameters 

determined using both the first and second 

coordination spheres were significantly different from 

those determined using the first coordination sphere 

alone.  

If the b and R0 parameters have been properly 

chosen, the combined use of Eqs (1) and (2) have many 

applications in chemistry.  For example, crystal 

structures may be checked, or the reasonableness of a 

proposed molecular structure may be evaluated.  

Another useful application is to determine the total 

atomic valence (i.e., the number of electrons used in 

bonding) which is sometimes identical to the oxidation 

state.   

In the present study, the quantum-mechanical 

LCAO approach is used to derive Pauling’s empirical 

bond valence – length relationship.  An expression for 

the b parameter is derived in terms of atomic-orbital 

exponents.  The b parameters calculated from the 

orbital exponents were found to be consistent with 

bond valence-length data from crystallographic data.  

This approach was applied to carbon-carbon and 

carbon-hydrogen bonds by curve-fitting almost two-

thousand carbon-carbon and carbon-hydrogen bond 

lengths collected from crystallographic information 

files (cif files; Crystallographic Open Database) 

(Grazulis et al. 2009) from over 40 compounds to yield 

reliable bond valence – bond length relationships for 

C-C and C-H bonds.   

 

 

Theory 

 

Following the widely used method of linear 

combination of atomic orbitals (LCAO) to represent 

the bonding between two atoms labeled as 1 and 2,  
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where  is the bonding molecular-orbital wave 

function, and 1 and 2 are atomic-orbital wave 

functions for the bonding atoms, 2 is the probability 

density distribution function, 1 is the wave function 

for atom 1 and 1
2 is its probability density, 2 is the 

wave function for atom 2 and 2
2 is its probability 

density.  Once integration over volume space is carried 

out, the third term (212) becomes the Mulliken 

population density (Mulliken 1955), or the integrated 

sum of the overlap between the two atomic-orbital 

wave functions.  This term represents the electronic 

interaction between the two atoms and is associated 

with bond strength or bond valence.  But prior to 

integration, the 212 term represents the cross-section, 

or thickness, of the overlap region.  For the present 

purpose, the thickness of the probability density in the 

overlap region is defined as the “bond order” or “bond 

valence” or “s.”  That is,   
 

212 s   .  (4) 

 

It is common to use hydrogen-like wave functions 

to represent a valence electron in a chemical bond. In 

1930, Slater (Slater 1930) found that when the wave 

function of any orbital can be approximated as a single 

exponential node-less function 
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where Z is the nuclear charge of the atom,  is a 

screening constant (the core electrons shield the 

valence electron(s) from the nuclear charge), n* is the 

effective principal quantum number, a0 is the Bohr 

radius (0.529 Å), and Y(,) is the spherical harmonic 

term.  The pre-exponential factor rn-1 scales the 

function by broadening and shifting as the effective 

principal quantum number n* increases.   

For the present application, the wave function 

is “shifted” or “scaled” when the corresponding bond 

length is normalized to the bond length at unit valence; 

that is, 2r = R0 when s = 1; this will be done at a later 

point in the paper.  The pre-exponential scaling term   

rn-1 is therefore removed from Slater’s wave function, 

Eq. (5).  Since only the radial overlap region between 

the two bonding atoms is of interest, the spherical 

harmonic term, Y(,), is also ignored as a constant.  

The bond order or bond valence (cross section or 

thickness) between bonding atoms 1 and 2 is now 

written, starting with Eq. (4), as  

 

  (6) 

 

in terms of orbital exponents where, in general, =(Z-

)/n*.  Taking the natural logarithm of Eq. (6) gives 

 

 (7) 

 

The problem here is how to express the two 

different atomic radii r1 and r2 belonging to two unique 
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atoms (and two electrons!) in terms of only one 

variable, R, which is the bond length or interatomic 

distance between the two different atoms.  Clearly, an 

approximation must be made.  In a previous paper 

(Hardcastle 2013), it was noted that the derivative of 

the radial distribution function RDF in the overlap 

region of the chemical bond with respect to R yields 

the maximum which was identified as the atomic 

radius and the 1/e distance: r1=r2=R/e.   This led to an 

erroneous (inconsistent with the data) result for the “b” 

parameter in Eq. (2).  In this paper, this disparity will 

be corrected by using a much simpler approach.   

The concept of electronic potential and absolute 

electronegativity as described by Parr and Pearson 

(Parr and Pearson 1983) is used in the present study.  

The absolute electronegativity of Mulliken (in eV) is 

defined as the average of the ionization potential (I) 

and the electron affinity (A) (Mulliken 1934).  The 

instantaneous slope of the change in electronic energy 

with number of electrons, (E/N), is equal rigorously 

to the chemical potential  of the density functional 

theory, which is the negative of the absolute 

electronegativity (Parr and Pearson 1983).  That is,  

 

 

 (8) 

 

After Parr, the absolute chemical hardness  is defined 

as  

 

(9) 

 

which may be recast in a difference form, also using 

Eq. (8), as  
 

 

(10) 

 

Eq. (10) quantitatively describes the fractional electron 

transfer from one atom (or molecular species) to 

another.  This relationship shows that electrons will 

flow from the atom of lower  (higher potential) to that 

of higher  (lower potential) until the 

electronegativities (or chemical potentials) become 

equalized.  Once the bond is formed, at equilibrium, 

the (E/N) curves for both atoms are identical, as 

indicated by Eq. (8).  This means that once a chemical 

bond is formed, the new radius of either atom 1 or 

atom 2 is one-half the resulting interatomic distance, 

R/2 (at equilibrium, where both chemical potentials 

and electronegativities are equal). That is, once the 

chemical bond is formed, r1=r2=R/2.   

Continuing from Eq. (7), substituting r1=r2=R/2, 

and collecting terms, results in  

 

    (11) 

 

 

For a chemical bond of unit valence, s=1 and R=R0 are 

substituted.  Eq. (11) becomes 

 

 (12) 

 

 

Subtracting Eq. (12) from Eq. (11), simplifying and 

collecting terms, yields 

 

 

(13) 

 

 

 

       (14) 

 

where,  

(15) 

 

 

Eq. (14) is precisely Pauling’s empirical bond valence -

length relationship, Eq. (2), where the b “empirical” 

fitting parameter is now defined in terms of atomic 

orbital exponents, Eq. (15).  Eq. (15) shows that the b 

parameter may be calculated only from appropriate 

atomic-orbital exponents 1 and 2 for the two bonding 

atoms, provided that the atomic orbital exponents are 

precisely known.  Conversely, this also provides a 

method of determining atomic orbital exponents from 

experimental bond length data.   

 

Results and Discussion 

 

The b and R0 fitting parameters from the bond 

length-valence relation, Eq. (2) or Eq. (14), may be 

found from published crystallographic data, for 

example from crystallographic information files (cif 

files).  Unreliable XRD data was discarded from the 

data set only when the results grossly deviated from the 

known valence of carbon.  Using these bond length 

data, and the conservation of valence formula, Eq. (1), 

optimized parameters have been found and 

conveniently compiled into a few major references 

(Adams 2001; Brown 2002; Brown 2009), as well as 
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on a web site (Adams 2004).  A comprehensive list has 

been tabulated and referenced in a recent publication in 

this journal (Hardcastle and Laffoon 2012). It is 

important to recognize that b values are closely 

coupled to the choice of Ro, so that a different (or 

erroneous) choice of R0 necessarily affects the value of 

b.  Incorrect values of b and Ro are noted to result in a 

correlation that seems to work well for intermediate 

bond lengths, but not for very long and very short 

bonds; this observation is common among researchers 

(Brown 2002).  Eq. (15) allows an independent 

determination of the b parameter, so that the only 

floating parameter is Ro, defined as the bond length of 

unit valence for that particular pair of atoms.   

The simplest method of calculating an atomic 

orbital exponent can be traced back to Slater’s original 

work (Slater 1930) where he introduced the node-less 

single exponential wave function, Eq. (5), and defined 

the atomic orbital exponent as  

 

    (16) 

 

where Z is the nuclear charge of the atom,  is a 

screening constant, and n* is the effective principal 

quantum number and a function of n.  Slater presented 

a list of rules (aka, Slater’s Rules) for determining the 

shielding constant , the effective quantum number n*, 

and consequently the orbital exponent , and these 

rules are routinely included in inorganic chemistry 

textbooks (Miessler, Fischer, Tarr 2014).  More refined 

values require computation and have been published by 

many authors including Clementi and coworkers 

(Clementi and Raimondi 1963; Clementi, Raimondi, 

Reinhardt 1967), Ghosh and Biswas (Ghosh and 

Biswas 2002).  In this study, it was founds that the 

atomic orbital exponents found by using the 

empirically adjusted exchange parameters of Herman 

(Herman 2004) were more consistent with our curve-

fitted results using published diffraction data for 

elements in the second row of the periodic table 

(Dodd., Hardcastle, Laffoon 2013).   

Carbon-carbon and carbon-hydrogen bond lengths 

from about 41 carbon compounds were collected as 

well as almost two-thousand bond lengths from the 

Crystallographic Open Database (COD).  Mercury 

(version 3.6) free software was used to evaluate the 

bond lengths from the crystallographic information 

files (www.ccdc.cam.ac.uk/mercury/).  All bond 

distances up to 4.5 Å were considered in all valence 

calculations (see Supplemental file). The bond 

valences were normalized using the valence sum rule, 

Eq. (1), where carbon uses four electrons for bonding 

(Vc = 4.000) and hydrogen uses one electron for 

bonding (VH = 1.000).  This results in the following 

bond valence-length relationships for C-C and C-H 

bonds, respectively,  
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It is a universal practice to assume that the orbital 

exponent of hydrogen is H = 1.000 since there is no 

electron screening and the principal quantum number is 

assumed to be 1; according to Eq. (16), H = (Z-s)/n* = 

(1-0)/1 = 1.000.  After a best-fit analysis of all C-C and 

C-H bond length data, the orbital exponent for carbon 

was determined to be C = 1.651.  This compares 

favorably with reported values of 1.5679 (Clementi 

and Raimondi 1963), 1.625 (Ghosh and Biswas 2002), 

1.7210 (2s) and 1.6105 (2p) (Herman 2004).  Note that 

the “b” parameter for C-C bonds is 0.3305 in Eq. (17) 

which is approximately that of 0.307 determined by 

Pauling in 1947 (see Eq. (2)) in spite of the fact that 

there was little accurate C-C bond length data available 

at that time.   

To present a few applications showing the 

usefulness of Eqs (17) and (18), consider the structure 

of diamond at ambient temperature and pressure (Hom, 

Kiszenik, Post 1975).  The C-C bond lengths in units 

of Angstroms are 4x1.544, 12x2.52, 12x2.953, 8x4.368 

which result in a total carbon valence of 4.02 electrons 

(or valence units) using Eq. (17).  Note that a carbon 

atom is assumed to form a chemical bond not just to 

each of its nearest neighbors at 1.544 Å, but to all 

carbons in the lattice; of course this effect is negligible 

at distances greater than 4.5 Å.  According to valence 

bond theory, the sp3 hybridization predicted from the 

valence bond theory shows the preferred direction of 

bonding, but not the only direction of C-C bonding in 

the diamond structure.  Another sp3-hybridized carbon 

lattice is that of the hexagonal (synthetic) diamond 

lattice (Bundy and Kasper 1967) which has bond 

lengths of 3x1.543, 1.545, 6x2.52, 6x2.522, 6x2.956, 

6x2.575, 8x3.603 resulting in a total carbon valence of 

4.18 electrons.   

Consider results from an early structure 

determination of graphite (Wyckoff 1963) with bond 

lengths of 3x1.418, 6x2.456, 3x2.836, 2x3.348, 
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12x3.636, 12x4.152 yielding a total carbon valence of 

4.16 electrons.  Naphthalene (Fabbiani et al. 2006) 

shows C-C bond lengths (in Angstroms) of on the C3-

labeled carbon as 1.400, 1.423, 1.424, 2.424, 2x2.431, 

2.438, 2.796, 2.816, 3.458, 3.520, 3.792, 3.987, 

2x4.366, 2x4.671, 4.684, 4.692, 4.702, 4.757, 4.906, 

and 4.930; applying Eq. (17) yields a total valence of 

4.07 electrons for this carbon.   

It is also interesting to calculate the C-C and C-H 

bond valences or bond orders for diatomic species and 

functionalities.  From Eq. (17), C-C bond orders are 

calculated as follows: C2
-(doublet), R = 1.2233 Å, s = 

2.32 electrons; C2(singlet), R = 1.24253 Å, s = 2.18 

electrons; C2(triplet), R = 1.3119 Å, s = 1.76 electrons 

(Huber and Herzberg 1979).  Using Eq. (18), the C-H 

bond order in the diatomic CH doublet can be 

calculated: R = 1.1019 Å, s = 0.903 electrons.     

 

Conclusions 

 

A quantum-mechanical LCAO approach was used 

to derive Pauling’s empirical bond valence-length 

relationship.  The b parameters calculated from the 

orbital exponents are consistent with optimized b 

parameters calculated from bond valence-length data 

determined from published crystallographic data.   

In this study, almost two-thousand carbon-carbon 

and carbon-hydrogen bond lengths were evaluated 

from over 40 compounds to yield reliable bond valence 

– bond length relationships for C-C and C-H bonds.  

The atomic orbital exponent for carbon was found to 

be C = 1.651 which compares favorably with 

published values of 1.5679 ((Clementi and Raimondi 

1963), 1.625 (Ghosh and Biswas 2002), 1.7210 (2s) 

and 1.6105 (2p) (Herman 2004).  Unit valence bond 

lengths (R0 where s = 1) were found to be 1.493 Å for 

the carbon-carbon bond and 1.061 Å for the carbon-

hydrogen bond.  
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