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Abstract –Recent new advances in observer theory have been proposed based on nonlinear transformations 
of the original state. The estimator structure being considered uses state space methods, but allows the 
observer to approach the original state based on a single scalar parameter. This approach appears to have 
assets, particularly when the measurement error has an unknown but bounded uncertainty being processed 
through the measurement array. In these cases, the peaking phenomena due to the feedback gain (as 
normally witnessed from using the Luenberger observer) appear to be reduced significantly. In this note, 
emphasis will be given to simulations of a robotics example, but the theoretical results are applicable to 
numerous aerospace, electrical, and mechanical systems where state estimation is involved. The performance 
of the estimator considered in this note will be purely based from performance robustness to measurement 
bias. 

I. Introduction  
NTERNAL dynamics of a system modeled from aerospace, robotics, structures, electronics, and numerous other 
physical phenomena can generally be mathematically reconstructed in real time. These model based 

reconstruction strategies of the internal dynamics are generally derived from input-output mapping of the signals 
entering and exiting the process or system.  In addition, some knowledge of the errors in the model parameters 
(possibly bounds) and the exogenous and measurement uncertainties (typically statistical based) are assumed known 
(see [6,7,8,9] for interesting examples). The typical format for the construction of these ‘observers’ are based upon a 
state space methodology, thus in general a first order vector based format. There are numerous technical references 
that convey a good explanation of how this process evolves, but the mathematical approach presented in references 
[1-3] provides the reader sufficient information to follow the remaining portion of this technical note. The process of 
developing a state estimator doesn’t necessarily imply that the process or system is linear, and more often than not 
the modeling and estimation process involves a nonlinear system. However, since the work that is being exhibited in 
this paper is fairly preliminary, the structure of the mathematics will concentrate on linear dynamical systems. The 
work is not limited to linear systems, but it provides a better view as to the assets in administering such an approach 
for the construction of a norm based state estimator. 
 

In this note, we will consider the state space based linear system modeled as a first order process,  
vxMzDwuBxAx +=++=Σ ,)( 1                  (1) 

where nx ℜ∈ are coordinates in state space with initial states at time zero designated by 0)0( xx = , the known time 
invariant state space realization },,{ MBA  with the matrix A assumed Hurwitz, the measurement vector zz ℜ∈ , and 
measurement uncertainties denoted by the signal }{v , the exogenous disturbance {w}, and the notation dtdxx /=  
denoting the time derivative. In addition, the realization is assumed detectable, and since there is no forwarding term 
u, the system is strictly proper (for convenience of presentation). In this note the disturbance w(t) will always be a 
zero mean with bounded covariance, and the measurement uncertainty given as any bounded time varying signal, 
i.e., 

νγ≤v , where the notation ⋅  denotes the space of piecewise continuous, bounded signals ( ∞L norm), i.e., if a 

time varying vector )(tu  is in ∞L , then ∞=
≥


2

0
)(sup tuu

t
.In addition, the notation 2/1

max2
))'(( CCC λ= is 

consistent with the literature for any constant matrix mxnC ℜ∈ . 
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II. Estimation / Brief Review 
Similar to the format given in (1), assume that the following system replicates the system )( 1Σ with the 

exception that the measurement uncertainty is assumed zero mean without the bias, and there exists an exogenous 
system disturbance, 

vxMzwDuBxAx +=++=Σ ,)( 2                                                                        (2) 

From consulting the literature on estimation theory (for example, [1-3]) and denoting the estimated state and 
measurement 2x and 2z , respectively, the state x can be reconstructed by forming the following realization, 

22222

2223

,
)()(

MxzFMxFvFMxBuAx
vMxzzzFBuAxx
=−+++=

+=−++=Σ 

               
(3) 

where F  is constructed to assure the matrix )( FMA−  is Hurwitz. By defining xxx −= 22
~  as the error between the 

state x  and the estimated state 2x , the first derivative is given by 

.~
~)(~

22

22

DwFzFMxxA
DwFvxFMAx

−+−=
−+−=

                 
(4) 

This structure provides a foundation for recent developments in estimation theory ([5]), provided the exogenous 
disturbance w is negligible compared to the measurement error v. This case is not an extreme limitation in many 
aerospace systems, and will be used as a basis for the continuing work that follows.  
 

III. Estimator in Transformed Coordinates / Review 
The main theoretical result that follows enables the construction of the state vector px , where px  satisfies the 

constraint 

2
1/2

22
1/2

2
~~)(lim xxxxxxxx pp

pt

−−

∞→
=−−=−

               

(5) 

and is provided by the following Theorem 1(as presented in [5]). 
 
Theorem 1Consider the linear time invariant stable system with sensor noise, i.e., defined by the following 
realization 

vxMzuBxAx +=+= ,                                 (6)

                   
and a pre-constructed linear estimator (designed without consideration of sensor bias),  

22222 )( MxzzzFBuAxx =−++= ,                      (7) 
where the matrix )( FMA−  is Hurwitz. Then assuming that a predetermined positive scalar q has been chosen such 
that the bound holds 

                (8) 

for the sensor bias noise source v ,then there exists a nonlinear state estimator px satisfying the limit as ∞→t ,

0→− xx p Furthermore, recalling that FzFMxxAxxx +−=−= 2222
~~  , then the structure of this particular state 

estimator is given by 

}~~{~~
2

1/2
22

1/2
2 xqxq

dt
dxxqAuBxAx pp

pp
−− +−+=

              (9) 
and converges for any given initial condition pair })0(~),0({ 2xx p

. 
 

Recall that the positive scalar quantity q has to be chosen to assure 1~
2 <xq for all time. In essence, 

1||})({||sup||)(~||
0

))((
2 <= ∫ −−

∞→

t
tFMA

t
dvFeqtxq τττ

               
(10)  

1
0

))((
2 1||})({||||)(~|| ttdFveqtxq

t
tFMA ≥∀<= ∫ −− τττ
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This inequality plays an important role in the development of sufficient conditions that enable performance bounds 
to be achieved. The next section summarizes these results based on further research and some interesting results 
restated from the literature. 
 

IV. Performance Bounds and Discussion 
There are results that guarantee the bound 1~

2 <xq when 
vv γ< for an appropriately chosen q. The following 

Lemma provides the tools for computing q, and technically provides a means for weighting the ∞L gain from the 
input signal )(tv to the output error state )(~

2 tx (for example, see [4,11]). 
Lemma 1For the linear time invariant system 

0)0(~,~)(~ =+−= xFvxFMAx                  (11) 

If the matrix (A-FM) is Hurwitz, then the system is finite-gain ∞L stable. Moreover, 

vgx F≤2
~  where 

)(
)(2

min

2max
2

P
FP

gF λ
λ

=
                    (12)

 

and P is the solution to the Lyapunov equation  
0)'()( =+−+− IPFMAFMAP .                      (13) 

Choice of Weight From applying the results of the previous Lemma, the unit bound can be assured on the state 
estimator error, i.e.,  

1~)/(1 2 xqgq vF →< γ                   (14)
 

hence providing a means for guaranteeing that 0lim →− xxp  as 0→p  can be achieved. Although these bounds 
can be conservative, they provide sufficient conditions for the construction of the nonlinear estimation filter (the 
state px ). 
Comment on the L-2 gain It’s interesting to note that the finite gain on

2L (the ∞H problem in the literature, [11]) 
could also be used as performance indices. However, the transformation and state metric used in this note are 
instantaneous values in time, and the map used in this presentation is bounded input-bounded output stable.  The 

2L
gain (to be investigated in future work) assumes the input and output signals are square sumable / finite energy, and 
hence further research is warranted to determine the assets in using those performance indices. To elaborate, notice 
that the inequality in (10) can be restated in the frequency domain for expressing the 2L gain. That is, the constraint 
for the computation of the weight q becomes 

1)(~
222 vsGqxq

∞
=                 (15) 

where FFMAsIsG 1))(()( −−−= is the stable transfer function equivalent of the estimator realization, and the 
nomenclature 

2
v now denotes the 

2L norm denoted by 

∞= ∫
∞


02

)()(' dttvtvv
                (16)

 

Thus, we can always satisfy the bound in (10) by choosing an appropriate q such that 

2
)(

1
vsG

q
∞



                (17)

 

This is an easy computation due to the choice of }{
2

vv =γ , and the norm
∞

)(sG is easily computable. Also recall 
that γ<

∞
)(sG if and only if the same γ , there exists a solution P to the following algebraic Riccati equation 

0')()( 2 =++′−+− − IPPFFPFMAFMAP γ               (18) 
such that )'( 2 PFFFMA −+− γ is asymptotically stable (see [11] for further information). Since the 

2L  problem 
assumes that 

2
v is finite, the physical offset of the sensor bias would necessarily have to occur over a finite time 

interval to be applicable to this solution. In addition, the output norm performance would then become 
pp

p xqxxqxxqxx /2

2222
1/2

222
~)()( =−−=− −

                        (19)
 

which implies that 0lim →− xxp  as 0→p  can still be achieved using the 2L  gain. We conclude with some 

examples that are based on finite-gain ∞L algorithms with performance satisfying the inequalities of Lemma 1. 
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V. Algorithms For Applications 

The numerical strategy can be basically restated from [5], with some additional insight provided to exhibit a 
simpler form for the limiting case when 0→p . Recall that the original set of coupled equations has to be integrated 

to obtain the newly defined state px , as provided by the following algorithm. 
Numerical Strategy A nonlinear state px can be constructed by simultaneous integration of the following three 
nonlinear equations, 

}~~{~~
2

1/2
22

1/2
2 xqxq

dt
dxqxqAuBxAx pp

pp
−− +−+=  

FzFMxxAx +−= 222
~~    

22222 )( MxzzzFBuAxx =−++= ,                (20) 
 
where the initial conditions can be independently selected. For completion of presentation, the last derivative as 
expressed in (20) has the more explicit characterization as follows, 

22
2

221/2
2

/2
2

1/2
2

~
~

~~
)1/2(~}~~{ x

x
xx

pIxqxqxq
dt
d ppp 











 ′

−+= −−

              

(21) 

with 
2

~x , as previously given in (20). An interesting assessment of the three dynamic equations in (20) shows that 

0→− xx p  as 0→p for a sufficiently large time. However, it’s interesting to note that for this case, px can be 

constructed directly from the states 2x and 2
~x as the following lemma states. 

 
Lemma 2 For the limiting design case where the parameter 0→p , the state px can be directly constructed from a 

direct sum of the states 2x and 2
~x . That is, 

22
~xxx p −= . 

Proof 
( ) 2

1/2
22

1/2
2

~~)()(lim xqxqxxqxxqxx pp
pt

−−

∞→
=−−→− and since   

22
~lim xxx

t
→−

∞→
, we have 

222
1/2

2
~~~ xxxqxqx p

p −→− −

which implies that
220,

~lim xxx ppt
−→

→∞→
. 

The results of Lemma 2 show that the newly constructed state px approaches x , although the measurement 
array z is still being fed back through the estimator nonlinear setup, as seen in equation (20). In fact, the gain F is 
fixed and hence the bandwidth of the closed loop estimated realization px  appears reduced from observation of the 
simulations and plots that follow in section 6. 

VI. Flexible Robot Example  
A simple example was chosen that represents a single-link manipulator with flexible joints, and taken from [10], 

with the addition of damping and linearization. The equations representing the system are two coupled second order 
systems with an externally driven torque and exogenous noise source as follows, 

.][][
)(

)(

2121

22122

121111

′+′=
+=−−+

=−+++

vvqqz
wuqqkqcqJ

wqqkqMgLqcqI




                (22)

 

In this example, I and J are moments of inertia, k is a positive spring constant, M is a total mass, L is a distance, c a 
viscous damping coefficient, and the angular position coordinates are },{ 21 qq with external torque commanded by u, 
and the exogenous noise pair },{ 21 ww , and the measurement noise (bounded signals but continuous) are denoted by 

},{ 21 vv .Although the theoretical results assume zero exogenous noise, the examples included have negligible 
external disturbances in the simulations. By assigning the states { } },,,{,,, 22114321 qqqqxxxxx 


==′ , and assuming 

that the available states for measurements are { } }',{', 2121 vvqqz += , the first order form becomes 
vxMzwDBuxAx w +=++= ,

                        (23)
 

where the matrices },,,{ MDBA w are given by 
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
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



=



















= M

J

I
D

J

B w

          (24)

 

The numbers assigned for the time invariant realization elements are as follows. 
 

Table 1 
Equation 

Coefficient 
Simulation Number 

Assigned 
M 5 (lbm) 
L 1 (ft)  
I 1(ft lbf s^2) 
J 1(ft lbf s^2) 
k 64 (ft lbf) 
g 32.2 (ft/ s^2) 
c 0.1(ft lbf s) 

 
The open loop plant eigenvalues and closed loop estimation eigenvalues are listed in the following Table 2 (the 
estimation feedback gain F was assigned the value ]4.318.96.984.6[=F  based on a standard linear quadratic 
form). 

            Table 2 
Open Loop  
Eigenvalue 

Closed Loop Eigenvalue 

-0.05+- 15.73i -1.65+-  15.71i 
-0.05+-   6.45i -6.51+-    9.35i 

 
Throughout the simulations, the driving external torque command was assigned the function )2sin(2.0)( fttu π⋅=
where the driving frequency f   was fixed at 0.6 Hertz. 

For consistency, there were three simulations with three different constants assigned to the parameter p (the 
transformation constant), }5.0,2.1,8.1{31 =−p . All simulations are shown in following Figure 1-3, with the actual 
position  shown in blue, the data in red is the Luenberger filter results of estimated position, and the black signal 
represents the estimated position from the nonlinear filter. In all simulations, an estimation bias v of magnitude 0.1 
radians was introduced onto the measurement signal ( vtMxtz += )()( ) where the bias v was held at the constant dc 
offset from  4 < t < 6 seconds. 

 
Figure 1  (p = 1.8)      Figure 2  (p = 1.2)     Figure 3  (p = 0.5) 

 
From observation of Figures 1-3, as p approaches zero, the estimation error reduces with respect to the ratio set by 
the norm coefficient, that is,  

.~~)(lim 2
1/2

22
1/2

2 xxxxxxxx pp
pt

−−

∞→
=−−=−

              

(25)
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Thus, for a given p the ratio of reduction in error is proportional to the linear estimation error as predicted. The state 
initial conditions were all set to zero in the simulations, although not a necessary requirement due to the Hurwitz 
criteria.  
Discussion on weighting q During the simulation of the plant and estimation process, the value for q (see equation 
(14)) was computed and consistently gave us an extremely conservative weighting factor to assure that the value for 

1~
2 <xq . For example, for all the simulations accomplished that are shown in Figures 1-3, the values for vγ were 

constrained in all simulations with an upper bound of 0.1 (i.e., 
vv γ<  ). In addition, the spectral content of the 

Lyapunov solution P had a fairly broad range which resulted in an extremely conservative bound to assure that 
1~)/(1 2 xqgq vF →< γ . Inherently, since the eigenvalues of P were computed to an approximation of values 

{0.04, 0.14, 13.14, 52.40}, the bound )( vFg γ exceeds unity and the q turns out to be extremely conservative, hence 
q was kept at unity in all examples that follow. 
 

VII. Conclusions 
The filter presented in this research has interesting performance results. A promising feature of this new filter is the 
reduction in the error of the constructed estimated state, when the expectation of getting sensor noise bias is highly 
probable. As seen from the plots, the standard Luenberger observer is sensitive to impulsive errors shortly after the 
sensor bias is introduced into the system. In this regard, the nonlinear estimator is robust to these disturbances 
originating from sensor noise, which appears to be predominately due to the design criteria explicit in the nonlinear 
transformation itself.   
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